$\square \square \square$
 ALL INDIA TEST SERIES

JEE (Main) - 2019 FULL TEST - 1

Time : 3 Hours
Maximum Marks : 360

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.
You are not allowed to leave the Examination Hall before the end of the test.

INSTRUCTIONS

A. General :

1. This booklet is your Question Paper containing $\mathbf{9 0}$ questions.
2. The Question Paper CODE \& TEST ID is printed on the right hand top corner of this booklet. This should be entered on the OMR Sheet.
3. Fill the bubbles completely and properly using a Blue/Black Ball Point Pen only.
4. No additional sheets will be provided for rough work.
5. Blank papers, clipboards, log tables, slide rules, calculators, cellular phones, pagers, and electronic gadgets in any form are not allowed to be carried inside the examination hall.
6. The answer sheet, a machine-readable Optical mark recognition sheet (OMR Sheet), is provided separately.
7. DO NOT TAMPER WITH / MUTILATE THE OMR OR THE BOOKLET.
8. Do not break the seals of the question-paper booklet before being instructed to do so by the invigilator.
B. Question paper format \& Marking Scheme :
9. The question paper consists of 3 parts (Physics, Chemistry and Maths).
10. The test is of 3 hours duration. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct. Each question carries +4 marks for correct answer and -1 mark for wrong answer.

Name of the Candidate (in Capitals) \qquad

Test Centre \qquad

Candidate's Signature \qquad -

Centre Code \qquad

Invigilator's Signature \qquad

PHYSICS

SECTION - I

This section contains 30 questions. Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONLY ONE is correct. Each question carries +4 marks for correct answer and -1 mark for wrong answer.

1. In an experiment, to measure the volume of an irregular lamina using screw gauge, a student observes that the zero line of the head scale is 4 division below the line of graduation. There are 100 divisions on the circular scale. He gave 2 complete rotations of the circular scale and found that the distance moved by the screw is 2 mm . If the main scale reading is 4 , then find the relative percentage error in the volume. Given 35th division coincides with the main scale line and the measured length of the body has a relative error of 2.25%
(a) 1.63%
(b) 2.71%
(c) 3%
(d) 1.93%
2. Two balls are thrown simultaneously from a top of a building with same initial velocity u. One ball is thrown vertically upwards and the other ball is thrown vertically downwards. The distance between the two bodies after time 5 s is (take, $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(a) $10 u$
(b) $5 u$
(c) $15 u$
(d) $20 u$
3. Two balls A and B are projected simultaneously from the origin with initial velocities $50 \mathrm{~m} / \mathrm{s}$ and $20 \mathrm{~m} / \mathrm{s}$ at angle 60° and 30° respectively, with horizontal. The position of the ball A with respect to ball B after 3 s in y-direction is given by
(a) 117.79 m
(b) 112.30 m
(c) 94.50 m
(d) 100 m
4. A block of mass 4 kg is released from a height of 25 cm on a smooth track. The minimum value of h, so that it completes the vertical circle should be
(a) 25 cm
(b) 10 cm
(c) 20 cm
(d) 5 cm

5. Four blocks are connected with a string passing over a frictionless pulley fixed at the corner of a table as shown in figure. The coefficient of static friction of A with table is 0.50 . The minimum mass m of the block, so that blocks do not move should be
(a) 5 kg
(b) 6 kg
(c) 4 kg

(d) 3 kg
6. A block of mass 5 kg is connected to a massless spring through a string passing over a frictionless pulley. Initially, the block is at rest and spring is in the state of its natural length. The maximum elongation produced in the string will be
(take, $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(a) 50 m
(b) 25 m
(c) 100 m
(d) 5 m

7. Consider a uniform square plate. Line $A B$ passes through its centre. $C D$ is another line passing through centre of plate, it makes an angle α with $A B$. If moment of inertia about an axis $A B$ is $2 I$, then the moment of inertia of the plate about the axis $C D$ is
(a) $2 I$
(b) $2 I \sin ^{2} \alpha$
(c) $2 I \cos ^{2} \alpha$
(d) $2 I \cos ^{2}(\alpha / 2)$

8. A satellite of mass $2 m$ is circulating around the earth with constant angular velocity. If the radius of the orbit is R_{0} and mass of the earth is M, then the angular momentum about the centre of earth is
(a) $2 m \sqrt{G M R_{0}}$
(b) $M \sqrt{2 G m R_{0}}$
(c) $2 m \sqrt{\frac{G M}{R_{0}}}$
(d) $M \sqrt{\frac{G M}{R_{0}}}$
9. If the pressure at half the depth of a lake is equal to $2 / 3$ pressure at the bottom of the lake, then the depth of the lake is
(a) 10 m
(b) 20 m
(c) 60 m
(d) 30 m
10. 3 kg of ice at $-13^{\circ} \mathrm{C}$ is mixed with 10 kg of water at $13^{\circ} \mathrm{C}$ in an insulating vessel having a negligible heat capacity. The specific heat of water and ice are $1 \mathrm{kcal} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ and $0.5 \mathrm{kcal} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$, respectively. The latent heat of fusion of ice is $80 \mathrm{kcal} / \mathrm{kg}$. The final mass of water remaining in the container is
(a) 11.4 kg
(b) 10.7 kg
(c) 7.2 kg
(d) 9.3 kg
11. At $27^{\circ} \mathrm{C}$, the ratio of density of a fixed mass of a gas to a pressure of gas is $\frac{1}{2}$. At $153^{\circ} \mathrm{C}$, the ratio will be
(a) $\frac{1}{2}$
(b) $\frac{75}{213}$
(c) $\frac{213}{75}$
(d) $\frac{153}{300}$
12. A Carnot engine has efficiency $\frac{1}{6}$. Efficiency becomes $\frac{1}{3}$ when the temperature of the sink is lowered by 57 K . What is the temperature of the source?
(a) 285 K
(b) 171 K
(c) 399 K
(d) 342 K
13. A particle of mass m is executing oscillations about the origin on the X-axis. Its potential energy is $U(x)=k|x|^{3}$, where k is a positive constant. If the amplitude of oscillation is A, then its time period T is
(a) proportional to $\frac{1}{\sqrt{A}}$
(b) independent of A
(c) proportional to \sqrt{A}
(d) proportional to $A^{3 / 2}$
14. A closed hollow insulated cylinder is filled with gas at $27^{\circ} \mathrm{C}$ and also contains an insulated piston of negligible weight and negligible thickness at the middle point. The gas on one side of the piston is heated to $90^{\circ} \mathrm{C}$. If the piston moves 10 cm , then the length of the hollow cylinder is
(a) 210.4 cm
(b) 96.5 cm
(c) 105.2 cm
(d) 64.2 cm
15. A string is rigidly tied at two ends and its equation of vibration is given by $y=\cos 2 \pi t \sin 2 \pi x$. Then, minimum length of string is
(a) 1 m
(b) $\frac{1}{2} \mathrm{~m}$
(c) 5 m
(d) $2 \pi m$
16. In a diode AM-detector, the output circuit consists of $R=1 \mathrm{k} \Omega$ and $\mathrm{C}=10 \mathrm{pF}$. A carrier signal of 100 kHz is to be detected. Is it good
(a) yes
(b) no
(c) information is not sufficient
(d) None of the above
17. A parallel plate capacitor of plate area A and plate separation d is charged to potential V and then the battery is disconnected. A slab of dielectric constant K is then inserted between the plates of the capacitors so as to fill the space between the plates. If Q, E and W denote respectively, the magnitude of charge on each plate, the electric field between the plates (after the slab is inserted) and work done on the system in the process of inserting the slab, then state correct relation from the following
(a) $Q=\frac{\varepsilon_{0} A V K}{d}$
(b) $W=\frac{\varepsilon_{0} A V^{2}}{2 K d}$
(c) $E=\frac{V}{K d}$
(d) $W=\frac{\varepsilon_{0} A V^{2}}{2 d}\left(1+\frac{1}{K}\right)$
18. Two identical thin rings each of radius 2 m are coaxially placed at a distance 2 m apart. If 5 C and 10 C are respectively, the charges uniformly spread on the two rings, the work done in moving a charge of 3 C from the centre of one ring to that of other is $\left(K=\frac{1}{4 \pi \varepsilon_{0}}\right)$
(a) 0
(b) +2.20 k
(c) 31.8 k
(d) 38.41 k
19. When a shunt of 4Ω is attached to galvanometer, the deflection reduces to $\frac{1}{5}$ th. If an additional shunt of 2Ω is attached, the deflection will be
(a) $I / 5$
(b) $I / 13$
(c) $I / 10$

(d) $I / 12$
20. A cell is connected between two points P and R of a circular conductor $P Q R S$ of centre O with angle $P O R=30^{\circ}$. If B_{1} and B_{2} are the magnitudes of the magnetic field at O due to the currents in $P Q R$ and $P S R$ respectively, the ratio $\frac{B_{1}}{B_{2}}$ is
(a) 0.2
(b) 0.8
(c) 1.5
(d) 1

21. A 20 eV electron is circulating in a plane perpendicular to a uniform field of magnetic induction $3 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$. The orbital radius of the electron is given by $(\sqrt{7.03}=2.65)$
(a) 70 cm
(b) 35 cm
(c) 25 cm
(d) 50 cm
22. A small circular loop of radius 2.5 cm is placed inside a square loop of edge 30 cm . The loops are coplanar and concentric. The mutual inductance will be, if current flowing through square loop is 5 A .
(a) $6 \times 10^{-11} \mathrm{H}$
(b) $7.4 \times 10^{-9} \mathrm{H}$
(c) $7.4 \times 10^{-5} \mathrm{H}$
(d) $6.5 \times 10^{-5} \mathrm{H}$
23. A star initially has 10^{40} deutrons. It produces energy via the processes.

$$
\begin{aligned}
& { }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{1}^{3} \mathrm{H}+\mathrm{p} \\
& { }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{n}
\end{aligned}
$$

The masses of the nuclei are as follows
$\mathrm{M}\left(\mathrm{H}^{2}\right)=2.014 \mathrm{amu} ; \mathrm{M}(p)=1.007 \mathrm{amu}$
$\mathrm{M}(n)=1.008 \mathrm{amu} ; \mathrm{M}\left(\mathrm{He}^{4}\right)=4001 \mathrm{amu}$
If the average power radiated by the star is $10^{16} \mathrm{~W}$, the deutron supply of the star is exhausted in a time of the order of
(a) $10^{6} \mathrm{~s}$
(b) $10^{8} \mathrm{~s}$
(c) $10^{12} \mathrm{~s}$
(d) $10^{16} \mathrm{~s}$
24. A hydrogen like atom of atomic number Z is in an excited state of quantum number $2 n$. It can emit a maximum energy photon of 204 eV . If it makes a transition to quantum state n, a photon of energy 40.8 eV is emitted. The value of n will be
(a) 1
(b) 2
(c) S
(d) 4
25. The half-life of Bi^{210} is 5 days. What time is taken by $(7 / 8)$ th part of the sample to decay?
(a) 3.4 days
(b) 10 days
(c) 15 days
(d) 20 days
26. The threshold wavelength for photoelectric emission from a material is $5200 \AA$. Photoelectrons will be emitted when this material is illuminated with monochromatic radiation from a
(a) 50 W blue lamp
(b) 1 W infrared lamp
(c) 50 W blue lamp
(d) 1 W ultraviolet lamp
27. The transfer ratio of a transistor is 50 . The transistor is used in common-emitter configuration. The input resistance is $4 \mathrm{k} \Omega$ and input AC voltage is 0.02 V . The peak value of collector current is
(a) 0.25 mA
(b) $0.25 \mu \mathrm{~A}$
(c) 0.50 mA
(d) $0.50 \mu \mathrm{~A}$
28. A lens is placed between a source of light and a wall. It forms images of area A_{1} and A_{2} on the wall for its two different positions. The area of the source or light is
(a) $\frac{A_{1}+A_{2}}{2}$
(b) $\left[\frac{1}{A_{1}}+\frac{1}{A_{2}}\right]^{-1}$
(c) $\sqrt{A_{1} A_{2}}$
(d) $\left[\frac{\sqrt{A_{1}}+\sqrt{A_{2}}}{2}\right]^{2}$
29. In a Young's double slit experiment, the separation between the slits is 0.5 mm . The distance between the screen and slit is 1.5 m . For a monochromatic light of wavelength 500 nm . the distance of 3 rd minima from the central maxima is
(a) 2.25 mm
(b) 0.75 mm
(c) 3.75 mm
(d) 1.50 mm
30. A glass prism $(\mu=1.5)$ is dipped in water $(\mu=4 / 3)$ as shown in figure. A light ray is incident normally on the surface $A B$. It reaches the surface $B C$ after totally reflected, if
(a) $\sin \theta \geq 8 / 9$
(b) $2 / 3<\sin \theta<8 / 9$
(c) $\sin \theta \leq 2 / 3$
(d) It is not possible

CHEMISTRY

SECTION - II

This section contains 30 questions. Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONLY ONE is correct. Each question carries +4 marks for correct answer and -1 mark for wrong answer.
31. Which of the following set of quantum numbers is correct for the $19^{\text {th }}$ electron of chromium?

	n	l	m	s
(a) 3	0	0	$1 / 2$	
(b) 3	1	-2	$1 / 2$	
(c) 4	0	0	$1 / 2$	
(d) 4	1	-1	$1 / 2$	

32. The energy of an electron in the $3^{\text {rd }}$ orbit of an atom is $-E$. The energy of an electron in the first orbit will be
(a) $-3 E$
(b) $-\frac{E}{3}$
(c) $-\frac{E}{9}$
(d) $-9 E$
33. Out of $\mathrm{N}_{2} \mathrm{I}, \mathrm{SO}_{2}, I_{3}^{+}, I_{3}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NO}_{2}^{-}$and N_{3}^{-}the linear species are
(a) $\mathrm{NO}_{2}^{-}, I_{3}^{+}, \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{N}_{2} \mathrm{O}, I_{3}^{+}, \mathrm{N}_{3}^{-}$
(c) $\mathrm{N}_{2} \mathrm{O}, I_{3}^{-}, \mathrm{N}_{3}^{-}$
(d) $\mathrm{N}^{3-}, I^{3+}, \mathrm{SO}_{2}$
34. Planar structure is shown by
(a) CO_{3}^{2-}
(b) BCl_{3}
(c) $\mathrm{N}\left(\mathrm{SiH}_{3}\right)_{3}$
(d) All of those
35. Peroxide ion \qquad
(i) Has five completely filled antibonding molecular orbitals
(ii) Is diamagnetic
(iii) Has bond order one
(iv) Is isoelectronic with neon

Which one of these is correct?
(a) (iv) and (iii)
(b) (i), (ii) and (iv)
(c) (ii), (iii)
(d) None of these
36. Among $\mathrm{KO}_{2}, \mathrm{KO}_{2}, \mathrm{AlO}_{2}^{-}, \mathrm{BaO}_{2}$ and NO_{2}^{+}, unpaired electron is present in
(a) $\mathrm{NO}_{2}^{+}, \mathrm{BaO}_{2}$
(b) KO_{2} and AlO_{2}^{-}
(c) KO_{2} only
(d) BaO_{2} only
37. All form ideal solutions except
(a) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$
(c) $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
(d) $\mathrm{C}_{2} \mathrm{H}_{5}$ I and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
38. The units of constant a in vander Waals' equation is
(a) $\mathrm{dm}^{6} \mathrm{~atm} \mathrm{~mol}^{-2}$
(b) $\mathrm{dm}^{3} \mathrm{~atm} \mathrm{~mol}^{-1}$
(c) $\mathrm{dmatm}_{\mathrm{mol}}{ }^{-1}$
(d) $\mathrm{atm} \mathrm{mol}^{-1}$
39. Among the following, the least stable resonance structure is
(a)

(b)

(c)

(d)

40. Match the List -I and List - II and pick the correct matching from the codes given below:

	A	B	C	D	E
(a) 2	1	4	5	3	
(b) 2	5	1	4	3	
(c) 3	1	2	5	4	
(d) 5	4	1	2	3	

41. Amongst the following solutions, the buffer solution is

List-I (Atomie/Molecular Species)	List-II (Corresponding pairs)
A. Isotope	1. ${ }^{2288_{\mathrm{Ra}}^{88} \&} \&^{228} \mathrm{Ac}_{89}$
B. Isobar	2. ${ }^{39} \mathrm{Ar}_{88} \&{ }^{40} \mathrm{~K}_{19}$
C. Isotone	3. ${ }^{2} \mathrm{H}_{1} \&{ }^{3} \mathrm{H}_{1}$
D. Isosters	4. ${ }^{235} \mathrm{U}_{92} \&{ }^{231} \mathrm{Th}_{90}$
E. Isodiaphers	5. $\mathrm{CO}_{2} \& \mathrm{~N}_{2} \mathrm{O}$

(a) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$ solution
(b) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH}$ solution
(c) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}$ solution
(d) $\mathrm{NaOH}+\mathrm{HCl}$ solution
42. Which of the following oxides will not give OH^{-}in aqueous solution?
(a) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(b) MgO
(c) $\mathrm{Li}_{2} \mathrm{O}$
(d) $\mathrm{K}_{2} \mathrm{O}$
43. Saturated solution of KNO_{3} is used to make 'salt-bridge' because
(a) Velocity of K^{+}is greater than that of NO_{3}^{-}
(b) Velocity of NO_{3}^{-}is greater than that of K^{+}
(c) Velocities of both K^{+}and NO_{3}^{-}are nearly the same
(d) KNO_{3} is highly soluble in water
44. $\quad \lambda_{\mathrm{CICH}_{2} \mathrm{COONa}}=224 \mathrm{ohm}^{-1} \mathrm{gmeq}^{-1}$
$\lambda_{\mathrm{NaCl}}=38.2 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{gmeq}^{-1}$
$\lambda_{H C l}=203 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{gmeq}^{-1}$
What is the value of $\lambda_{\mathrm{CICH}_{2} \mathrm{COOH}}$?
(a) $288.5 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{gmeq}^{-1}$
(b) $289.5 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{gmeq}^{-1}$
(c) $288.8 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{gmeq}^{-1}$
(d) $59.5 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{gmeq}^{-1}$
45. Gold numbers of protective colloids $\mathrm{A}, \mathrm{B} \mathrm{C}$ and D are $0.50,0.01,0.10$ and 0.005 , respectively. The correct order of their protective powers are
(a) $C<B<D<A$
(b) $A<C<B<D$
(c) $B<D<A<C$
(d) $D<A<C<B$
46. Which of the following statement is correct with respect to the property of elements with an increase in atomic number in the carbon family (group 14)
(a) Atomic size decrease
(b) Ionisation energy increase
(c) Metallic character decrease
(d) Stability of +2 oxidation state increase
47. Match List I (molecules) with List II (Boiling points) and select the correct answer.

List I

(A) NH_{3}
(B) PH_{3}
(C) AsH_{3}
(D) SbH_{3}
(E) BiH_{3}
(a) $A-i i i, B-i i, C-v, D-i v, E-i$
(b) $A-i, B-i v, C-v, D-i i, E-i i i$
48. KF combines with HF to form $K H F_{2}$. The compound contains the species
(a) K^{+}, F^{-}and H^{+}
(b) K^{+}, F^{-}and $H F$
(c) K^{+}and $\left[H F_{2}\right]^{-}$
(d) $[K H F]^{+}$and F^{-}
49. A metal M reacts with N_{2} to give a compound ' A ' $\left(M_{3} N\right)$. 'A' on heating at high temperature gives back ' M ' and 'A' on reacting with $\mathrm{H}_{2} \mathrm{O}$ gives a gas ' B '. ' B ' turns $\mathrm{CuSO} \mathrm{O}_{4}$ solution blue on passing through it. A and B can be
(a) Al and NH_{3}
(b) Li and NH_{3}
(c) Na and NH_{3}
(d) Mg and NH_{3}
50. In the test for nitrate ion, the brown ring formed has a formula $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$. The oxidation number of iron in this complex is
(a) +1
(b) +2
(c) +3
(d) 0 .
51. Which of the following complex will show geometrical as well as optical isomers?
(a) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(b) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{5}\right]$
(c) $\left[\operatorname{Pt}(\mathrm{en})_{3}\right]^{4+}$
(d) $\left[\operatorname{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$.
52. The following compounds have been arranged in order of their increasing thermal stabilities. Identify the correct order:
I. $\mathrm{K}_{2} \mathrm{CO}_{3}$
II. MgCO_{3}
III. CaCO_{3}
IV. BeCO_{3}
(a) I $<$ II $<$ III $<$ IV
(b) IV $<$ II $<$ III $<$ I
(c) IV $<$ II $<$ I $<$ III
(d) II $<$ IV $<$ III $<$ I
53. Which of the following statements is correct regarding the slag obtained during the extraction of a metal like copper or iron?
(a) The slag is lighter and has higher melting point than the metal.
(b) The slag is lighter and has lower melting point than the metal.
(c) The slag is heavier and has higher melting point than the metal.
(d) The slag is heavier and has lower melting point than the metal.
54. Given below are a set of resonating structures and their stability order is provided in bracket. Select which one of the following is incorrectly matched.
(a) $\mathrm{CH}_{2}=\underset{(I)}{\mathrm{CH}}-\mathrm{CH}=\mathrm{CH}_{2} \longleftrightarrow \mathrm{CH}_{2}-\stackrel{+}{\mathrm{C}} \mathrm{H}=\underset{(I I)}{\mathrm{CH}}-\overline{\mathrm{C}} \mathrm{H}_{2} \quad(\mathrm{I}>\mathrm{II})$
(b) $\mathrm{C}_{\mathrm{H}}^{\mathrm{H}_{2}}-\underset{(\mathrm{O})}{\ddot{O}}-\mathrm{CH}_{2} \longleftrightarrow \mathrm{CH}_{2}=\stackrel{+}{\stackrel{+}{\mathrm{I}})}-\mathrm{CH}_{3}(\mathrm{II}>I)$
(c) $\mathrm{CH}_{2}=\underset{(I)}{\mathrm{CH}}-\stackrel{\ddot{C}}{ } l: \longleftrightarrow \bar{C} H_{2}-\underset{(I I)}{C H}=\stackrel{+}{C} l: \quad(I I>I)$
(d) All of the above are correctly matched.
55. How many acyclic isomers can be drawn for the molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$?
(a) 2
(b) 6
(c) 5
(d) 4
56. Rank the following compounds in order of increasing heat of combustion
(a) (II) $<$ (I) $<$ (III)
(b) (II) $<$ (III) $<$ (I)
(c) (I) $<$ (II) $<$ (III)

(I)

(II)

(III)
(d) (III) $<$ (II) $<$ (I)
57. Alkyl halides can be obtained by all methods except
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{HCl} / \mathrm{ZnCl}_{2} \longrightarrow$
(c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaCl} \longrightarrow$
(b) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}-\mathrm{CH}_{2} \xrightarrow[\mathrm{Cl}_{2}]{\text { UV light }}$
(d) $\mathrm{CH}_{3} \mathrm{COOAg}+\mathrm{Br}_{2} / \mathrm{CCl}_{4} \longrightarrow$
58. Which of the following will not undergo aldol condensation?
(a) Acetaldehyde
(b) Propionaldehyde
(c) Trideuterio acetaldehyde
(d) Benzaldehyde
59. Which one of the following is NOT correct for sucrose:
(a) Hydrolysis of sucrose with dilute acid yields an equimolar mixture of D-glucose and D-fructose.
(b) Acid hydrolysis of sucrose is accompanied by a change in optical rotation.
(c) The glycosidic linkage in sucrose is in between C-1 of glucose and C-2 of fructose.
(d) Aqueous solution of sucrose exhibits mutarotation.
60. Hofmann's elimination product of A is:

(a)

(b)

(c)

(d)

MATHS

SECTION - III

This section contains 30 questions. Each question has 4 choices (a), (b), (c) and (d) for its answer, out of which ONLY ONE is correct. Each question carries +4 marks for correct answer and -1 mark for wrong answer.
61. The function of f and g are given by $f(x)=\{x\}$, the fractional part of x and $g(x)=\frac{1}{2} \sin [x] \pi$, where $[x]$ denote the integral part of x, then range of $g o f$ is
(a) $[-1,1]$
(b) $[0]$
(c) $\{-1,1\}$
(d) $[0,1]$
62. The function $f(x)=\frac{\log (1+a x)-\log (1-b x)}{x}$ is not defined at $x=0$. The value which should be assigned to f at $x=0$ so that it is continuous there, is
(a) $a-b$
(b) $a+b$
(c) $\log a+\log b$
(d) none of these
63. The coefficients a and b that make the function $f(x)=\left\{\begin{array}{cc}1 /|x| & \text { for }|x| \geq 1 \\ a x^{2}+b & |x|<1\end{array}\right.$ differentiable at any point are given by
(a) $a=-1 / 2, b=3 / 2$
(b) $a=1 / 2, b=-3 / 2$
(c) $a=1, b=-1$
(d) $a=1 / 2, b=3 / 4$
64. If $y=\sqrt{\frac{1-\sin ^{-1} x}{1+\sin ^{-1} x}}$ then $y^{\prime}(0)$ is equal to
(a) 1
(b) $1 / 2$
(c) -1
(d) $\sqrt{2} / 3$
65. The function $f(x)=(\log (x-1))^{2}(x-1)^{2}$ has
(a) local extremum at $x=1$
(b) point of inflection at $x=1$
(c) local extremum at $x=2$
(d) point of inflection at $x=2$
66. If $\int_{0}^{x^{2}} f(t) d t=x \cos \pi x$, then the value of $f(4)$ is
(a) 1
(b) $\frac{1}{4}$
(c) -1
(d) $-\frac{1}{4}$
67. The solution of $\frac{x d y}{x^{2}+y^{2}}=\left(\frac{y}{x^{2}+y^{2}}-1\right) d x$ is
(a) $y=x \cot (c-x)$
(b) $\cos ^{-1} y / x=-x+c$
(c) $y=x \tan (c-x)$
(d) $y^{2} / x^{2}=x \tan (c-x)$
68. If $I=\int_{0}^{\infty} \frac{\sqrt{x} d x}{(1+x)(2+x)(3+x)}$, then I equals
(a) $\frac{\pi}{2}(2 \sqrt{2}-\sqrt{3}-1)$
(b) $\frac{\pi}{2}(2 \sqrt{2}+\sqrt{3}-1)$
(c) $\frac{\pi}{2}(2 \sqrt{2}-\sqrt{3}+1)$
(d) none of these
69. The length of the perpendicular from the points $\left(m^{2}, 2 m\right),\left(m m^{\prime}, m+m^{\prime}\right)$ and $\left(m^{\prime 2}, 2 m^{\prime}\right)$ to the line $x+y+1=0$ from
(a) an A.P.
(b) a G.P.
(c) a H.P.
(d) none of these
70. Three concentric circles of which the biggest is $x^{2}+y^{2}=1$ have their radii in A.P. with common difference $d(>0)$. If the line $y=x+1$ cuts all the circles in real distinct points, then
(a) $d>\frac{2-\sqrt{2}}{4}$
(b) $d>\frac{2+\sqrt{2}}{4}$
(c) $d>1+\frac{1}{\sqrt{2}}$
(d) d is any real number
71. Equation of a circle touching the line $|x-2|+|y-3|=4$ will be
(a) $(x-2)^{2}+(y-3)^{2}=12$
(b) $(x-2)^{2}+(y-3)^{2}=4$
(c) $(x-2)^{2}+(y-3)^{2}=10$
(d) $(x-2)^{2}+(y-3)^{2}=8$
72. Let $P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets. Then
(a) $P \subset Q$ and $Q-P \neq \varnothing$
(b) $Q \not \subset P$
(c) $P \not \subset Q$
(d) $P=Q$
73. Let $\mathrm{P}(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$ where $\theta+\phi=\pi / 2$, be two points on the hyperbola $x^{2} / a^{2}-y^{2} / b^{2}=1$. If (h, k) is the point of intersection of normal at P and Q, then k is equal to
(a) $\frac{a^{2}+b^{2}}{a}$
(b) $-\left[\frac{a^{2}+b^{2}}{a}\right]$
(c) $\frac{a^{2}+b^{2}}{b}$
(d) $-\left[\frac{a^{2}+b^{2}}{b}\right]$
74. If the tangent at a point $(a \cos \theta, b \sin \theta)$ on the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ meets the auxillary circle in two points, the chord joining them subtends a right angle at the centre; then the eccentricity of the ellipse is given by
(a) $\left(1+\cos ^{2} \theta\right)^{-1 / 2}$
(b) $1+\sin ^{2} \theta$
(c) $\left(1+\sin ^{2} \theta\right)^{-1 / 2}$
(d) $1+\cos ^{2} \theta$
75. The tangent at three points A, B and C on the parabola $y^{2}=4 x$, taken in pairs intersect at the points P, Q and R. If Δ, Δ^{\prime} be the areas of the triangles $A B C$ and $P Q R$ respectively, then
(a) $\Delta=2 \Delta^{\prime}$
(b) $\Delta^{\prime}=2 \Delta$
(c) $\Delta=\Delta^{\prime}$
(d) none of these
76. If $\sum_{i=1}^{9}\left(x_{i}-5\right)=9$ and $\sum_{i=1}^{9}\left(x_{i}-5\right)^{2}=45$, then the standard deviation of the 9 items $x_{1}, x_{2}, \ldots, x_{9}$ is :
(a) 4
(b) 2
(c) 3
(d) 9
77. If z_{1} and z_{2} lie on the same side the line $\bar{a} z+\bar{a} z+b=0$, where $a \in \mathbf{C}, a \neq 0, b \in \mathbf{R}$, then the ratio $\frac{a z_{1}+a \bar{z}_{1}+b}{\bar{a} z_{2}+a \bar{z}_{2}+b}$ is
(a) purely imaginary
(b) a positive real number
(c) a negative real number
(d) none of these
78. Sum of the common roots of $z^{2006}+z^{100}+1=0$ and $z^{3}+2 z^{2}+1=0$ is
(a) 0
(b) -1
(c) 1
(d) 2
79. If $|a \pm b|>c$ and $a \neq 0$, then the quadratic equation $a^{2} x^{2}+\left(b^{2}+a^{2}-c^{2}\right) x+b^{2}=0$
(a) has two real roots
(b) both positive roots
(c) cannot have real roots
(d) none of these
80. Let $S=\frac{4}{19}+\frac{44}{19^{2}}+\frac{444}{19^{3}}+\ldots .$. upto ∞. Then S is equal to
(a) $40 / 9$
(b) $38 / 81$
(c) $36 / 171$
(d) none of these
81. The value of λ for which the system of equations
$2 x-y-2 z=2$,
$x-2 y+z=-4$
$x+y+\lambda z=4$
has no solution is
(a) 3
(b) -3
(c) 2
(d) -2
82. A group of 6 boys and 6 girls is randomly divided into two equal groups. The probability that each group contains 3 boys and 3 girls is
(a) $10 / 231$
(b) $5 / 231$
(c) $90 / 231$
(d) $100 / 231$
83. In a hurdle race, a runner has probability p of jumping over a specific hurdle. Given that in 5 trials, the runner succeeded 3 times, the conditional probability that the runner had succeeded in the first trial is
(a) $\frac{3}{5}$
(b) $\frac{2}{5}$
(c) $\frac{1}{5}$
(d) $\frac{4}{5}$
84. If the number of terms in the expansion of $\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}, x \neq 0$, is 28 , then the sum of the coefficients of all the terms in this expansion, is :
(a) 243
(b) 729
(c) 64
(d) 2187
85. In triangle ABC , $\frac{a \cos A+b \cos B+c \cos C}{a+b+c}$ is equal to
(a) $r+R$
(b) R / r
(c) r / R
(d) r / R
86. If $\frac{\cos \left(\theta_{1}-\theta_{2}\right)}{\cos \left(\theta_{1}+\theta_{2}\right)}+\frac{\cos \left(\theta_{3}+\theta_{4}\right)}{\cos \left(\theta_{3}-\theta_{4}\right)}=0$,
then $\tan \theta_{1} \tan \theta_{2} \tan \theta_{3} \tan \theta_{4}$ is equal to
(a) -1
(b) 1
(c) 2
(d) 4
87. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right], 6 A^{-1}=A^{2}+c A+d I$, then (c, d) is
(a) $(-11,6)$
(b) $(-6,11)$
(c) $(6,11)$
(d) $(11,6)$
88. The value of a for which the volume of parallelopiped formed by the vectors $i+a j+k, j+a k$ and $a i+k$ is minimum is
(a) -3
(b) 3
(c) $1 / \sqrt{3}$
(d) $-\sqrt{3}$
89. If θ is the angle between the line $r=2 i+3 j-k+(i+j+k) t$ and the plane $r .(3 i-4 j+5 k)=q$, then
(a) $\cos \theta=\frac{2 \sqrt{6}}{15}$
(b) $\sin \theta=\frac{2 \sqrt{6}}{15}$
(c) $\cos \theta=-\frac{11 \sqrt{7}}{70}$
(d) $\sin \theta=-\frac{11 \sqrt{7}}{70}$
90. The lines $r=i-j+\lambda(2 i+k)$ and $r=(2 i-j)+\mu(i+j-k)$ intersect for
(a) $\lambda=1, \mu=1$
(b) $\lambda=2, \mu=3$
(c) all values of λ and μ
(d) no value of λ and μ.

SOLUTION OF AITS JEE (MAIN) FULL TEST - 1

PHYSICS

1. (b)

Pitch $=\frac{\text { Distance moved by the screw }}{\text { Number of complete rotations of the ciruclar scale }}=\frac{2 \mathrm{~mm}}{2}=1 \mathrm{~mm}$
Total number of divisions on the circular scale, $N=100$
\therefore Least count, $\frac{P}{N}=\frac{1}{100}=0.01 \mathrm{~mm}$
Zero error $=4 \times$ Least, count $=0.04 \mathrm{~mm}$
Observed diameter $=4+(35 \times 0.01)=4.35 \mathrm{~mm}$
Corrected diameter $=(4.35-0.04) \mathrm{mm}=4.31 \mathrm{~mm}$
As $\quad V=\pi\left(\frac{D}{2}\right)^{2} l$
$\therefore \quad\left(\frac{\Delta V}{V}\right)_{\max }=\frac{2 \Delta D}{D}+\frac{\Delta l}{l}=2 \times \frac{0.01}{4.31} \times 100 \%+2.25 \%=2.71 \%$
2. (a)

For downward motion,

$$
\begin{array}{ll}
h_{1}=u t-\frac{1}{2} g t^{2} & {[\because a=-g]} \\
h_{1}=5 u-125 & \ldots \text { (i) }
\end{array}
$$

For downward motion,

$$
\begin{array}{rll}
& h_{2}=u t+\frac{1}{2} g t^{2} & {[\because a=+g]} \\
& h_{2}=5 u+125 & \ldots \text { (ii) } \\
\therefore & h=h_{1}+h_{2} \tag{ii}\\
& =(5 u-125)+(5 u+125) & \quad[\text { from Eqs. (i) and (ii)] } \\
& =10 u
\end{array}
$$

3. (d)

The instantaneous positions of the two balls are given by (in y-direction)
Ball $A, \quad y_{1}=\left(u_{1} \sin \theta_{1}\right) t-\frac{1}{2} g t^{2}$
Ball $B, \quad y_{2}=\left(u_{2} \sin \theta_{2}\right) t-\frac{1}{2} g t^{2}$
The position of the ball A with respect to ball B is given by

$$
y=y_{1}-y_{2}=\left(u_{1} \sin \theta_{1}-u_{2} \sin \theta_{2}\right) t=(50 \sin 60-20 \sin 30) \times 3=100 \mathrm{~m}
$$

4. (b)

Velocity of a block at point B is,

$$
\begin{equation*}
v=\sqrt{2 g h} \tag{i}
\end{equation*}
$$

To complete the vertical circle, the velocity of block should be atleast $\sqrt{5 g R}$
$\therefore \quad v \geq \sqrt{5 g R}$
$\Rightarrow \quad \sqrt{2 g h} \geq \sqrt{5 g R}$
[from Eq. (i)]
$\Rightarrow \quad h \geq \frac{5 R}{2} \quad \Rightarrow \quad h_{\min }=\frac{5 R}{2}=\frac{5 \times 4}{2}=10 \mathrm{~cm}$
5. (a)

FBD of given system is
$N=(7+m) g$
$f=\mu N=0.50(7+m) g$
For the blocks to remain at rest

$$
\begin{aligned}
& 6 g \leq 0.50(7+m) g \\
& 12 \leq(7+m) \\
& m \geq 5 \Rightarrow m_{\min }=5 \mathrm{~kg}
\end{aligned}
$$

6. (a)

When block goes down by x_{0}, Spring extends by x_{0}
Loss in gravitational potential of the block = gain in energy of spring.

$$
m g x_{0}=\frac{1}{2} k x_{0}^{2} \Rightarrow k=\frac{2 m g}{x_{0}}
$$

Maximum extension of spring

$$
=\frac{2 m g}{k}=\frac{10 g}{k}=\frac{10 \times 10}{2}=50 \mathrm{~m}
$$

7. (a)
$A^{\prime} B^{\prime} \perp A B$ and $C^{\prime} D^{\prime} \perp C D$
From symmetry,

$$
I_{A B}=I_{A^{\prime} B^{\prime}}=2 I \quad \text { and } I_{C D}=I_{C^{\prime} D^{\prime}}
$$

From theorem of perpendicular axes,

$$
\begin{aligned}
& I_{Z Z}=I_{A B}+I_{A^{\prime} B^{\prime}}=I_{C D}+I_{C^{\prime} D^{\prime}} \\
& I_{A B}+I_{A^{\prime} B^{\prime}}=2 I+2 I=4 I \\
\Rightarrow & I_{Z Z}=4 I
\end{aligned}
$$

$\Rightarrow 4 I=I_{C D}+I_{C^{\prime} D^{\prime}}$
$\Rightarrow 4 I=2 I_{C D}$

$$
\left[\because I_{C D}=I_{C^{\prime} D^{\prime}}\right]
$$

$\Rightarrow I_{C D}=2 I$
$\Rightarrow I_{A B}=I_{C D}=2 I$
8. (a)

Angular momentum
$=$ Mass \times Orbital velocity \times Radius
$=2 m\left(\sqrt{\frac{G M}{R_{0}}}\right) \times R_{0}=2 m \sqrt{G M R_{0}}$
9. (b)

Pressure at half the depth $=p_{0}+\frac{h}{2} \rho g$
Pressure at the bottom $=p_{0}+h \rho g$
According to given condition,

$$
\begin{aligned}
& p_{0}+\frac{h}{2} \rho g=\frac{2}{3}\left(p_{0}+h \rho g\right) \\
\Rightarrow \quad & 3 p_{0}+\frac{3 h}{2} \rho g=2 p_{0}+2 h \rho g \quad \Rightarrow \quad h=\frac{2 p_{0}}{\rho g}=\frac{2 \times 10^{5}}{10^{3} \times 10}=20 \mathrm{~m}
\end{aligned}
$$

10. (a)

Ice will absorb heat to raise its temperature to $0^{\circ} \mathrm{C}$, then its melting takes place.
Let $\quad m_{i}=$ Initial mass of ice

$$
\begin{aligned}
& m_{i}^{\prime}=\text { Mass of ice that melts } \\
& m_{w}=\text { Initial mass of water }
\end{aligned}
$$

By law of mixture, heat gained by ice $=$ heat lost by water

$$
\begin{array}{ll}
\Rightarrow & m_{i} \times C \times(13)+m_{i}^{\prime} \times L=m_{w} C_{w}(13) \\
\Rightarrow & (3)(0.5)(13)+m_{i}^{\prime} \times 80=(10)(1)(13) \\
\Rightarrow & 80 m_{i}^{\prime}=100.5 \\
& m_{i}^{\prime}=1.4 \mathrm{~kg}
\end{array}
$$

\therefore Final mass of water $=$ Initial mass of water + Mass of ice that melts $=10+1.4=11.4 \mathrm{~kg}$
11. (b)

As $p V=\mu R T=\frac{m}{M} R T \Rightarrow \frac{m}{V p}=\frac{M}{R T} \Rightarrow \frac{\text { density }}{p}=\frac{M}{R T}$

$$
\begin{align*}
&\left(\frac{\text { density }}{p}\right)_{\mathrm{At} 27^{\circ} \mathrm{C}}=\frac{M}{R(300)}=\frac{1}{2} \\
& \Rightarrow \quad \frac{M}{R}=\frac{300}{2} \tag{i}\\
&\left(\frac{\text { density }}{p}\right)_{\mathrm{At} 153^{\circ} \mathrm{C}}=\frac{M}{R(426)} \tag{ii}
\end{align*}
$$

From Eqs. (i) and (ii), we get

$$
\left(\frac{\text { density }}{p}\right)_{\mathrm{At} 155^{\circ} \mathrm{C}}=\frac{300}{2 \times 426}=\frac{75}{213}
$$

12. (d)
13. (a)
14. (a)

Using Charle's law, we have

$$
\frac{V}{T}=\mathrm{constant}
$$

$\Rightarrow \frac{A\left(\frac{l}{2}+10\right)}{363}=\frac{A\left(\frac{l}{2}-10\right)}{300} \Rightarrow \frac{\frac{l}{2}+10}{363}=\frac{\frac{l}{2}-10}{300}$
As the piston moves 10 cm , the length of one side will be $\left(\frac{l}{2}+10\right)$ and other side $\left(\frac{l}{2}-10\right)$.
$\Rightarrow 300\left(\frac{l}{2}+10\right)=363\left(\frac{l}{2}-10\right) \Rightarrow 150 l+3000=181.5 l-3630$
$\Rightarrow 6630=31.5 l \Rightarrow l=210.4 \mathrm{~cm}$
15. (b)

Given equation of stationary wave is

$$
y=\sin 2 \pi x \cos 2 \pi t
$$

Comparing it with standard equation,

$$
y=2 A \sin \frac{2 \pi x}{\lambda} \cos \frac{2 \pi t}{\lambda}
$$

We have, $\frac{2 \pi x}{\lambda}=2 \pi x \Rightarrow \lambda=1 \mathrm{~m}$
Minimum distance of string (first mode)

$$
L_{\min }=\frac{\lambda}{2}=\frac{1}{2} \mathrm{~m}
$$

16. (b)
17. (c)
18. (b)

$$
\begin{aligned}
& W=q\left(V_{02}-V_{01}\right) \text { where, } V_{01}=\frac{Q_{1}}{4 \pi \varepsilon_{0} R}+\frac{Q_{2}}{4 \pi \varepsilon_{0} R \sqrt{2}} \\
& V_{02}=\frac{Q_{2}}{4 \pi \varepsilon_{0} R}+\frac{Q_{1}}{4 \pi \varepsilon_{0} R \sqrt{2}} \\
& \Rightarrow \quad V_{02}-V_{01}=\frac{\left(Q_{2}-Q_{1}\right)}{4 \pi \varepsilon_{0} R}\left[1-\frac{1}{\sqrt{2}}\right) \\
& \Rightarrow \quad W=\frac{q\left(Q_{2}-Q_{1}\right)}{4 \pi \varepsilon_{0} R} \frac{(\sqrt{2}-1)}{\sqrt{2}}
\end{aligned}
$$

On putting the values,

$$
\begin{aligned}
& Q_{1}=5 C, Q_{2}=10 C, R=2 \mathrm{~m}, q=3 C, \text { we get } \\
& W=2.2 k
\end{aligned}
$$

19. (b)
20. (d)
$B=\frac{\mu_{0} \theta_{i}}{4 \pi r} \Rightarrow B \propto \theta_{i}$
But $\frac{i_{1}}{i_{2}}=\frac{l_{2}}{l_{1}}=\frac{\theta_{2}}{\theta_{1}}$
$\Rightarrow \quad \frac{B_{1}}{B_{2}}=\frac{\theta_{1}}{\theta_{2}} \cdot \frac{i_{1}}{i_{2}}$
So, $\frac{B_{1}}{B_{2}}=\frac{\theta_{1}}{\theta_{2}} \times \frac{\theta_{2}}{\theta_{1}}$
[from Eq. (i)]
$\Rightarrow \quad B_{1}=B_{2}$
21. (d)

If charged particle is moving perpendicular to the direction of \mathbf{B}, it experiences a maximum force which acts perpendicular to the direction of \mathbf{B} as well as \mathbf{v}. Hence, this force will provide the necessary centripetal force and the charged particle will move in a circular path in the magnetic field of radius r and is given by

$$
\frac{m v^{2}}{r}=q v B
$$

Kinetic energy of electron $=20 \mathrm{eV}$

$$
\Rightarrow \quad \frac{1}{2} m v^{2}=20 \mathrm{eV}
$$

$$
\begin{array}{ll}
\therefore & \frac{1}{2}\left(9.1 \times 10^{-31}\right) v^{2}=20 \times 1.6 \times 10^{-19} \\
\Rightarrow & v^{2}=\frac{2 \times 20 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}} \\
\Rightarrow & v^{2}=7.03 \times 10^{12} \\
\Rightarrow & v=2.65 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{array}
$$

Now, radius of circular path,

$$
r=\frac{m v}{q B}=\frac{9.1 \times 10^{-31} \times 2.65 \times 10^{6}}{1.6 \times 10^{-19} \times 3 \times 10^{-5}}=50 \mathrm{~cm}
$$

22. (b)

Magnetic field due to square loop at centre will be

$$
\begin{aligned}
& B_{1}=\frac{\mu_{0} I}{4 \pi d}\left(\cos \theta_{1}+\cos \theta_{2}\right) \\
& B_{1}=\frac{\mu_{0} I}{4 \pi \frac{L}{2}}\left(\cos 45^{\circ}+\cos 45^{\circ}\right)=\frac{\mu_{0} I}{\sqrt{2} \pi L}
\end{aligned}
$$

where, $\quad L=$ side of square loop
$I=$ current flowing through square loop

$$
B_{0}=4 B_{1}=\frac{2 \sqrt{2} \mu_{0} I}{\pi L}
$$

Flux through smaller loop,

$$
\begin{aligned}
& \phi=B_{0}\left(\pi r^{2}\right)=\frac{2 \sqrt{2} \mu_{0} I \pi r^{2}}{\pi L}=M I \\
& \therefore \quad M=\frac{2 \sqrt{2} \mu_{0} r^{2}}{L}
\end{aligned}
$$

Here, $r=$ radius of circular loop
On putting values of r and L, we get

$$
M=\frac{2 \sqrt{2} 4 \pi \times 10^{-7} \times(0.025)^{2}}{(0.30)}=7.4 \times 10^{-9} \mathrm{H}
$$

23. (c)
24. (b)
25. (c)
26. (d)

In this case, for photoelectric emission the wavelength of incident radiations must be less than $5200 \AA$. Wavelength of ultraviolet radiations is less than this value ($5200 \AA$) but wavelength of infrared or blue radiations is higher than this value.
27. (a)
$\beta=50, R_{i}=4 k \Omega=4000 \Omega, V_{i}=0.02 \mathrm{~V}, V_{i}=\Delta I_{B} R_{i}$
$\Rightarrow \quad \Delta I_{B}=\frac{V_{i}}{R_{i}}=\frac{0.02}{4000}=5 \mu \mathrm{~A}$
$\beta=\frac{\Delta I_{C}}{\Delta I_{B}}$
$\Rightarrow \quad \Delta I_{C}=\beta \Delta I_{B}=50 \times 5 \times 10^{-6} \mathrm{~A}=2.5 \times 10^{-4}=0.25 \times 10^{-3}=0.25 \mathrm{~mA}$
28. (c)
29. (c)

Distance of nth minima from central bright fringe,

$$
x_{n}=\frac{(2 n-1) \lambda D}{d}
$$

For $n=3$, i.e. 3 rd minima,

$$
x_{3}=\frac{(2 \times 3-1) \times 500 \times 10^{-9} \times 1.5}{2 \times 0.5 \times 10^{-3}}=3.75 \times 10^{-3} \mathrm{~m}=3.75 \mathrm{~mm}
$$

30. (a)

For total internal reflection at $A C$
$\Rightarrow \quad \sin \theta \geq \sin C$
$\Rightarrow \quad \sin \theta \geq \frac{1}{{ }_{w} \mu^{g}}$
$\Rightarrow \quad \sin \theta \geq \frac{\mu_{w}}{\mu^{g}}$
$\Rightarrow \quad \sin \theta \geq \frac{8}{9}$

CHEMISTRY

31. (c)
$19^{\text {th }}$ electron of chromium is $4 s^{1} n=4, l=0, n=0, s=+\frac{1}{2}$
32. (d)
33. (c)
34. (d)
35. (c)
36. (c)

Superoxides $\left(\mathrm{O}_{2}^{-}\right)$have one unpaired electron each and are, therefore, paramagnetic. Oxide ions $\left(\mathrm{O}^{2-}\right)$ and peroxides $\left(\mathrm{O}_{2}^{2-}\right)$ donot have any unpaired electrons and hence are diamagnetic.
37. (d)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ do not form ideal solution.
38. (a)

$$
P=\frac{n^{2} a}{V^{2}} ; a=\frac{P V^{2}}{n^{2}}=\operatorname{atm~dm}{ }^{6} \mathrm{~mol}^{-2}
$$

39. (a)
40. (c)
41. (a)
$\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ is a buffer solution (weak base and salt of strong acid)
42. (a)
43. (c)

Velocities of both K^{+}and NO_{3}^{-}are nearly the same in KNO_{3} so it is used to make salt-bridge.
44. (c)
$\mathrm{CICH}_{2} \mathrm{COONa}+\mathrm{HCl} \rightarrow \mathrm{CICH}_{2} \mathrm{COOH}+\mathrm{NaCl}$
$\lambda_{\text {CICH }_{2} \mathrm{COONa}+\lambda_{\mathrm{HCL}}=\lambda_{\text {CICH }_{2} \mathrm{COOH}}+\lambda_{\mathrm{NaCl}}}$
$224+203=\lambda_{\text {CICH }_{2} \mathrm{COOH}}+38.2$
$\lambda_{\text {CICH }_{2} \mathrm{COOH}}=427-38.2=388.8 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{gm} \mathrm{eq}^{-1}$
45. (b)

Gold number $\propto \frac{1}{\text { protective power }}$
46. (d)

As we go down the group inertness of $n s^{2}$ pair increase hence tendency to exhibit +2 oxidation state increase and that of +4 oxidation state decreases.
47. (b)
48. (c)
$\mathrm{KF}+\mathrm{HF} \longrightarrow \mathrm{KHF}_{2} \rightleftharpoons \mathrm{~K}^{+}+\mathrm{HF}_{2}^{-}$
49. (b)

Lithium form nitride on heating with nitrogen. Lithium nitride gives ammonia when heated with $\mathrm{H}_{2} \mathrm{O}$. Ammonia gas form tetrammine copper complex with CuSO_{4} solution.
$6 \mathrm{Li}+\mathrm{N}_{2} \longrightarrow 2 \mathrm{Li}_{3} \mathrm{~N}$
$\mathrm{Li}_{3} \mathrm{~N}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{LiOH}+\mathrm{NH}_{3}$
$\mathrm{CuSO}_{4}+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
50. (b)
O.N. of Fe is $+1: \quad \mathrm{x}+5(0)+0=+2$ or $\mathrm{x}=+2$.
51. (d)
$\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$ will show two geometcial forms and cis form will show optical isomerism.
52. (b)
53. (b)
54. (c)
55. (d)

 $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{3}$,

$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$

56. (d)
57. (c)
58. (d)
59. (d)
60. (a)

MATHS

61. (b)
g of $f(x)=g(f(x))=\frac{1}{2} \sin [(x)] \pi=0$, for all $x \in R$. Hence the range of g of f is $\{0\}$
62. (b)
$f(0)=\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left[a \log (1+a x)^{1 / x}+b \log (1-b x)^{-1 / b x}\right]=a+b$
63. (a)
f is continuous except possibly $x=1$ and $x=-1 \lim _{x \rightarrow 1-} f(x)=a+b$ and $\lim _{x \rightarrow l+} f(x) 1$ so $a+b=1 \quad f(1+)=-1$, $f^{\prime}(1-)=2 a$. Hence $a=-1 / 2, b=3 / 2$.
64. (c)

Put $x=\sin (\cos \theta)$ so $y=\tan \theta / 2$. Thus $\frac{d y}{d x}=\left(\frac{1}{2} \sec ^{2} \theta / 2\right)\left(-\frac{1}{\sin \theta(\cos \theta)}\right) \Rightarrow y^{\prime}(0)=-1$
65. (b)
66. (b)
$\int_{0}^{a} f(x) g(x) h(x) d x=\int_{0}^{a} f(a-x) g(a-x) h(a-x) d x=-\frac{1}{4} \int_{0}^{a} f(x) g(x)[3 h(x)-5] d x$
67. (c)

The given equation can be written as
$\frac{x d y-y d x}{x^{2}+y^{2}}=-d x \Rightarrow \frac{x d y-y d x}{x^{2}} \times \frac{1}{1+y^{2} / x^{2}}=-d x \Rightarrow \frac{1}{1+y^{2} / x^{2}} \frac{d}{d x}(y / x)=-d x$. Integrating we have $\tan ^{-1}(y / x)=-x+c \Rightarrow y=x \tan (c-x)$
68. (a)

Put $\sqrt{x}=t$ or $x=r^{2}$, so that
$I=2 \int_{0}^{\infty} \frac{t^{2}}{\left(1+t^{2}\right)\left(2+t^{2}\right)\left(3+t^{2}\right)} d t=\int_{0}^{\infty}\left(-\frac{1}{1+t^{2}}+\frac{4}{2+t^{2}}-\frac{3}{3+t^{2}}\right) d t$
$=\left(-\tan ^{-1} t+\frac{4}{\sqrt{2}} \tan ^{-1}\left(\frac{t}{\sqrt{2}}\right)-\frac{3}{\sqrt{3}} \tan ^{-1}\left(\left(\frac{t}{\sqrt{3}}\right)\right)\right]_{0}^{\infty}=-\frac{\pi}{2}+2 \sqrt{2}\left(\frac{\pi}{2}\right)-\sqrt{3}\left(\frac{\pi}{2}\right)=\frac{\pi}{2}(2 \sqrt{2}-\sqrt{3}-1)$
69. (b)
$p_{1}=\frac{m^{2}+2 m+1}{\sqrt{2}}, p_{2}=\frac{m m^{\prime}+m+m^{\prime}+1}{\sqrt{2}} p_{3}=\frac{m^{\prime} 2+2 m^{\prime}+1}{\sqrt{2}} \Rightarrow p_{1} p_{3}=p_{2}^{2} \Rightarrow p_{1}, p_{2}, p_{3}$ are in G.P.
70. (c)
71. (d)
72. (d)
73. (d)

Equations of the normal at P is $a x+b y \operatorname{cosec} \theta=\left(a^{2}+b^{2}\right) \sec \theta$
And the equation of the normal at $Q(a \sec \phi, b \sec \phi)$ is $a x+b y \operatorname{cosec} \phi=\left(a^{2}+b^{2}\right) \sec \phi$
Subtracting (2) from (1) we get
$y=\frac{a^{2}+b^{2}}{b} \cdot \frac{\sec \theta-\sec \theta}{\operatorname{cosec} \theta-\operatorname{cosec} \theta}$
So that $k=y=\frac{a^{2}+b^{2}}{b} \frac{\sec \theta-\sec (\pi / 2-\theta)}{\operatorname{cosec} \theta-\operatorname{cosec}(\pi / 2-\theta)} \quad[\because \theta+\phi=\pi / 2]$
$=\frac{a^{2}+b^{2}}{b} \frac{\sec \theta-\operatorname{cosec} \theta}{\operatorname{cosec} \theta-\sec \theta}=-\left[\frac{a^{2}+b^{2}}{b}\right]$
74. (c)

Equation of the tangent at $(a \cos \theta, b \sin \theta)$ to the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ is

$$
\begin{equation*}
\Rightarrow \quad \frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1 \tag{1}
\end{equation*}
$$

The joint equation of the lines joining the points of intersection of (1) and the auxillary circle $x^{2}+y^{2}=a^{2}$ to the origin, which is the centre of the circle, is
$x^{2}+y^{2}=a^{2}\left[\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta\right]^{2}$
Since these lines are at right angles
Co-efficient of $x^{2}+$ Co-efficient of $y^{2}=0$
$\Rightarrow 1-a^{2}\left(\frac{\cos ^{2} \theta}{a^{2}}\right)+1-a^{2}\left(\frac{\sin ^{2} \theta}{b^{2}}\right)=0 \Rightarrow \sin ^{2} \theta\left(1-\frac{a^{2}}{b^{2}}\right)+1=0$
$\Rightarrow \sin ^{2} \theta\left(b^{2}-a^{2}\right)+b^{2}=0 \Rightarrow \sin ^{2} \theta\left[a^{2}\left(1-e^{2}\right)-a^{2}\right]+a^{2}\left(1-e^{2}\right)=0$
$\Rightarrow\left(1+\sin ^{2} \theta\right) a^{2} e^{2}=a^{2} \quad \Rightarrow e=\left(1+\sin ^{2} \theta\right)^{-1 / 2}$
75. (a)

Let the coordinate of A, B, C be $\left(t_{i}^{2}, 2 t_{i}\right) i=1,2,3$ respectively. The tangents at A and B are $t_{1} y=x+t_{1}^{2}$ and $t_{2} y=x+t_{2}^{2}$
Which intersect at $x=t_{1} t_{2}, y=t_{1}+t_{2}$
So the vertices are $P\left(t_{1} t_{2}, t_{1}+t_{2}\right), Q\left(t_{1} t_{3}, t_{1}+t_{3}\right)$ and $R\left(t_{1} t_{3}, t_{1}+t_{3}\right)$
$\Delta=\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)\right|$
$\Delta^{\prime}=\left|\frac{1}{2}\right| \begin{array}{lll}t_{1} t_{2} & t_{1}+t_{2} & 1 \\ t_{2} t_{3} & t_{2}+t_{3} & 1 \\ t_{3} t_{1} & t_{3}+t_{1} & 1\end{array}| |=\left|\frac{1}{2}\right| \begin{array}{ccc}\left(t_{1}-t_{3}\right) t_{2} & t_{1}-t_{3} & 0 \\ \left(t_{2}-t_{1}\right) & t_{2}-t_{1} & 0 \\ t_{3} t_{1} & t_{3}+t_{1} & 1\end{array}| |=\left|\frac{1}{2}\left(t_{1}-t_{3}\right)\left(t_{2}-t_{1}\right)\left(t_{2}-t_{3}\right)\right| \Rightarrow \Delta=2 \Delta^{\prime}$
76. (b)
77. (b)

Produce the join of z_{1} and z_{2} to meet $a \bar{z}+a \bar{z}+b=0$ in z. Suppose z divides the join of z_{1} and z_{2} externally in the ratio $k: 1$ where $k>0$, so that
$z=\frac{z_{1}-k z_{2}}{1-k}$
As z lies on $\bar{a} z+a \bar{z}+b=0$
$\bar{a}\left(z_{1}-k z_{2}\right)+a\left(\bar{z}_{1}-k \bar{z}_{2}\right)+b(1-k)=0 \Rightarrow \frac{\bar{a} z_{1}+a \bar{z}_{1}+b}{\bar{a} z_{2}+a \bar{z}_{2}+b}=k>0$
78. (b)
$(z+1)\left(z^{2}-z+1\right)+2 z(z+1)=0 \Rightarrow(z+1)\left(z^{2}+z+1\right)=0 \Rightarrow z=-1, \omega, \omega^{2}$
Out of these ω and ω^{2} satisfy
$z^{2006}+z^{100}+1=0$
79. (a)
$D=\left(b^{2}+a^{2}-c^{2}\right)^{2}-4 a^{2} b^{2}$
$=\left(a^{2}+b^{2}-2 a b-c^{2}\right)\left(a^{2}+b^{2}-c^{2}+2 a b\right)=\left[(a-b)^{2}-c^{2}\right]\left[(a+b)^{2}-c\right]>0$
80. (c)
$\frac{1}{19} S=\frac{4}{19^{2}}+\frac{44}{19^{3}}+\ldots$
Subtract form S to obtain
$\frac{18}{19} S=\frac{4}{19^{2}}+\frac{44}{19^{3}}+\ldots$
Subtract form S to obtain $\frac{18}{19} S=\frac{4}{19}+\frac{40}{19^{2}}+\frac{400}{19^{3}}+\ldots$.
81. (b)
$\Delta=\left|\begin{array}{ccc}2 & -1 & -2 \\ 1 & -2 & 1 \\ 1 & 1 & \lambda\end{array}\right|=-3(3+\lambda)$
For $\lambda=-3$, sum of the last two equation gives $2 x-y-2 z=0$. Compare itwith the first equation.
82. (d)

The number of wave of choosing 6 persons out of 12 for a group is ${ }^{12} C_{6}$.
The number of ways in which this group can contains 3 boys and 3 girls is $\left({ }^{6} C_{3}\right)\left({ }^{6} C_{3}\right)$.
Therefore required probability $=\frac{\left({ }^{6} C_{3}\right)\left({ }^{6} C_{3}\right)}{{ }^{12} C_{6}}=\frac{100}{231}$.
83. (a)

Let A denote the event that the runner succeeds exactly 3 times out of five and B denote the event that the runner succeeds on the first trial.
$P(B \mid A)=\frac{P(B \cap A)}{P(A)}$
But $P(B \cap A)=P$ (succeeding in the first trial and exactly once in two other trials)
$=p\left({ }^{4} C_{2} p^{2}(1-p)^{2}\right)=6 p^{3}(1-p)^{2}$ and $P(A)={ }^{5} C_{3} p^{3}(1-p)^{2}=10 p^{3}(1-p)^{2}$
Thus, $\quad P(B \mid A)=\frac{6 p^{3}(1-p)^{2}}{10 p^{3}(1-p)^{2}}=\frac{3}{5}$.
84. (b)
85. (c)

$$
\begin{aligned}
& \frac{2 R(\sin A \cos A+\sin B \cos B+\sin C \cos C)}{2 R(\sin A+\sin B+\sin C)} \\
& =\frac{(\sin 2 A+\sin 2 B+\sin 2 C)}{2(\sin A+\sin B+\sin C)}=\frac{4 \sin A \sin B \sin C}{8 \cos (A / 2) \cos (B / 2) \cos (C / 2)}=4 \sin (A / 2) \sin (B / 2) \sin (C / 2)=\frac{r}{R}
\end{aligned}
$$

86. (a)
$\frac{1+\tan \theta_{1} \tan \theta_{2}}{1-\tan \theta_{1} \tan \theta_{2}}+\frac{1-\tan \theta_{3} \tan \theta_{4}}{1+\tan \theta_{3} \tan \theta_{4}}=0 \Rightarrow 2+2 \tan \theta_{1}, \tan \theta_{2} \tan \theta_{3} \tan \theta_{4}=0$
87. (b)
88. (c)

Volume of the parallelopiped formed by $i+a j+k, j+a k+k$ is
$V=\left|\begin{array}{lll}1 & a & 1 \\ 0 & 1 & a \\ a & 0 & 1\end{array}\right|=1+a^{3}-a$
$\frac{d V}{d a}=3 a^{2}-1$
For minimum value of V , we have $\frac{d V}{d a}=0$
$\Rightarrow a= \pm 1 \sqrt{3}$ Also $\frac{d^{2} V}{d a^{2}}=6 a>0$ for $a=1 / \sqrt{3}$. Thus V is minimum when $a=1 / \sqrt{3}$.
89. (b)

The line is parallel to the vector $i+j+k$ and the normal to the plane is $3 i-4 j+5 k$, so that angle between these vectors is $\pi / 2-\theta$

$$
\cos (\pi / 2-\theta)=\frac{(i+j+k)(3 i-4 i+5 k)}{\sqrt{1+1+1} \sqrt{3^{2}+4^{2}+5^{2}}} \Rightarrow \sin \theta=\frac{3-4+5}{\sqrt{3} \sqrt{50}}=\frac{2 \sqrt{6}}{15}
$$

90. (d)

The given lines intersect, if the shortest distance between the lines is zero.
We know that the shortest distance between the line $r=a_{1}+\lambda b_{1}$ and $r=a_{2}+\mu b_{2}$ is

$$
\frac{\left|\left(a_{1}-a_{2}\right) b_{1} \times b_{2}\right|}{\left|b_{1} \times b_{2}\right|}
$$

So the shortest distance between the given lines is zero if
$(i-j-(2 i-j)) \cdot(2 i+k) \times(i+j-k)=0$
L.H.S. $=\left|\begin{array}{ccc}-1 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & -1\end{array}\right|=1 \neq 0$

Hence the given lines do not intersect.

